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s = (z, -zz)/(2Z), Y = (z1+zr)/(21), we obtain an equation describing the motion in the mode Y== 0,z = 

z 0) (analogous to (1.2)) and an equation governing the orbital stability to a first approx- 
imation (analogous to (1.4)), which have the following form 

2" + 2a*z + 44.15 + 6&z! = 0 

y" + 2 (eO + e& + c,+) y = 0 
(I, = r,/2 + '(1. a, = ~118 + y,o, 06 = --y,/16 - Zy,o" 
c0 = 7112, cI = 3~~14, c,= -lSy,/i6 

In this case conditions (1.9) result in the relationships 

3 = A' (1 + '3~,). 15 = 4N (1 + 32y,o) 

8 (rr + 2r,)(i + 6~~) (1 + 32~) + (i + 8~~)s = 4h (i + 32~)' 
ys - yte/yr, N = n (n + 1) 

Here n is the number of bounded instability zones n== O,i, Z,... 
For instance, let n= 1. Then there should be (r = 7/16,yt = 1116, 40(r, + 27%) + 6 = 25h. 
Near the values of the system parameters and the energy h that satisfy the above relation- 

ships, all except n instability zones are "narrow" since they shrink to a line in the case 
when the relationships are satisfied exactly. This also refers to the first parametric re- 
sonance zone, which is ordinarily assumed to be "wide". 
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ON THE EXTREMALITY HYPOTHESIS OF STABLE RESONANCE MOTIONS* 

G.V. KASATKIN 

On the basis of a proposed approximate method of determining the mean 
values of functions of the coordinates and time on almost-integrable 
trajectories of dynamic systems, the force function and kinetic energy 
are averaged in the following problems: the motion of a material point 
in the neighbourhood of triangular points of libration of the plane 
circular restricted three-body problem, the motion of a physical pendulum 
with a rapidly oscillating point of suspension in the neighbourhoods of 
the lower and upper equilibrium positions. Preference is shown for the 
following hypotheses: the minimum of the averaged potential (V.V. Beletskii 
hypothesis), kinetic, and total energy of the mechanical system at stable, 
isolated, synchronous motions. 

The extremal principle proposed in the form of the V.V. Beletskii hypothesis /2, 3/ is 
of special interest in investigations of the extremal properties of stable resonance (syn- 
chronous) motions: The function 
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takes maximum values in stable resonance motions. Here U is a force function depending 
periodically on the time t, while z(~~,t) is the solution of the equations of motion of a 
mechanical systems with initial value z0 at the time t-c?. In connection with this extremal 
principle, the extremal pxoperties of stable synchronized motions were studied intensively 
t/4-6/, fox example) without, however, removing the question of its validity. 

Analysis of the values of the function iU> is difficult in principle, because the law 
of motion ~~~~so,~) is represented by a non-integrable differential system of equations of motion. 
The approximate evaluation of tU> on a computer, for the problem of plane satellite rotations 
relative to its centre of mass moving in an elliptic orbit. * (See /2/, as well as Beletskii, 
V.V. and Shliakhtin, A.N., Resonance rotations of a satellite when the magnetic and gravita- 
tional fields interact. Preprint of the Institute of Applied Mathematics of the TJSSR Academy 
of Sciences, No.46, 1980.) yielded results in agreement with the hypothesis. 

Such an approximate approach to the determination of <U> as well as the mean, with 
respect to time, of some other functions can be realized by analytical methods in certain 
problems. We consider the class of mechanical systems containing a small parameter E and 
which are integrable fox E-= 0. The fallowing scheme fox the approximate evaluation of <U) 
can be proposed for it: 

1) We apply the method of averaging or the method of the small parameter to the system 
of equations of motion since they enable solutions to be found close to the exact solutions 
in fairly Long time intervals; 

2) We formally replace the exact [unknown] solutions by the approximate solutions obtained, 
by means of which we also take the average of the force function ii. 

It is understood that in such an approach it is impossible ta guarantee the rigour of the 
results obtained, but its application results in interesting hypothetical deductions. 

1. We consider the plane restricted circular three-body problem /?/. Let p and l--p 
be the masses of two material points separated by unit distance. These points perform circular 
motion at unit angular velocity relative to their common centre of mass 0. We take an QZY 
coordinate system rotating at unit angular velocity such that p and i-_~ are at rest on the 
0~ axis. Let a weightless material point P{z,~) move in a gravitational field of mass p and 

t -ji. Its kinetic energy has the form 

dz 
T = t/Q [z’* + y” -+ 2(rY~--z’Y)+2a+Y% z’=x, du 

Y‘ = ;it 

The force function of attraction of the point P is given by the formula 

u (2, Yi = il - p) ((t-b r)s i- Ilv 4 p itt - if - P)P -I- PP 

&nong the set of motions of P there is a stable equilibrium position /T-9/ in the vari- 
ables +. I, 2') Y’ for p (l- p) < iJZi, p =b (15;-&=V30, P +7"45 -_1/1833)/90,namely, the triangular 
libration point L, (zA, yb): xp = ‘I1 - p’; yA = . 

we perform a transformation from +,1( to their perturbations $19 x5 with respect to L,:z= 

(% - c) f 21; y = u’32 + 15, then neglecting negligible constants, 2' and U can be represented in 
the form of power series in the variables JJ,* =s and their derivatives with respect to time 
nt'* IS__ 

The motion of the point P is characterized by the foliowing differential equations: 

If only first-order terms are kept, we then obtain equations in variations with reSpeC% 
to L, whase general solution is represented for ~(i--Pf <1121 in the form 

=1(o) = 4*1 + &a + J&%4- m* %'z(a, = 5&j 

=3w = CIQ f DIG + CA + 4% fw = '3(O) 

(A$Jp (I- 2~) sin wnt + Zcp, EOS unt, B, =i -j~+o,l)eowq, 

G,=-- {$+ wm*)Sinmmt, r>, ==* [i - *j 009 ciJ*t f 2&i= sin 0-t , n = 1, I?) 

In these forrmulas wl, wz are the eigenfrequencies determined by the characteristic equa- 
tion 

(1.2) 
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and ii are arbitrary constants related by a linear transformation to the initial values rIoof 
the variables ti. 

By Poincars's small parameter method, the solution of the complete system (1.1) can be 
represented by power series in Zi, or equivalently, in ziD 

‘i = ,il Aij (f) ‘j + j,$_l Bijk (‘) “jzk + . . . 7 Z: = ,$Jl Aij (0) ~j, Bi_+k (0) = 0, . . . (1.3) 

For a sufficiently small norm of the vector ZER’, these series reduce to a fairly large, 
but finite, time interval [O,r], where T-DO as 11 I II-0 0. 

We now take the average of the force function U in the set of trajectories given by (1.3) 
for t ~10, CO). To the accuracy of second-order quantities in the coordinates of the vector 2, 
inclusive, we obtain 

CU,=-++~P) [& + ol~)+2rl~,(-2~l)+r,*(~ + elai + 

z~~(~+ot)+~(-zol)+II(~+~~)]+Oulr$) 

Taking (1.2) into account, the positive-definiteness of the quadratic form in zi in the 
square brackets can be proved. Therefore, <v> as a function of the initial values +i'takes 
its maximum value at the point &'== 0, i.e., at the triangular libration point 4 CL4 is stable 
isolated synchronized motion). 

The same averaging of the Lagrange function T+ V shows that to second powers in Oi 
inclusive, tT+ V)==O. This means that tT) takes a minimum value at L,. 

Analogous deductions hold for the other triangular libration point L,. 

Remark. After replacing Zi by tie the function tV) acquires the denominators Y* %'- ol** 
and consequently becomes undetermined if 

1) ol= 0, i.e. p = 0. The limit case of the problem underconsideration,whichrepresents 
the Kepler problem, corresponds to this value of p. The motion corresponding to the 
limit position of L, is unstable: 

2) a*= 4. We are at the boundary point of the domain for satisfying the necessary 
conditions for stability: ~(l--)=1/27. 

We hence deduce that (V) reacts to critical values of p at which the property of stabil- 
ity of the triangular libration points is lost. 

2. We examine the problem of the motion of a physical pendulum which can rotate in a 
definite vertical plane around its point of suspension that performs small-amplitude and high- 
frequency sinusoidal oscillations in the vertical direction. The set of pendulum motions 
contains two equilibrium positions when the pendulum is directed upward and downward along the 
vertical. Let 0 be the angle of declination from the lower equilibrium position; then the 
motion will be described by the following differential equation (/lO/,p.371): 

0" + (k%* - e sin t) sin 8, k* < 1, 0 <6 < I (2.1) 

We take the expressions 

T = Ihe.*, 
e 

U =-2(Pe*-66int)sin*7j- 

as the kinetic energy and the force function. 
We consider pendulum motion near the lower equilibrium position O(t)- 0 (~(t)=.O is stable 

isolated synchronous motion). We use the substitution /lo/ 

e= I - e sin tsin +, 8’ = el - e coti ain z (e, 8’ - I, br) 

that reduces (2.1) to a system of standard form 

z'=ey+e*..., y'-elyco~t-~asinr-~/,rinat~in2~]+e*... 

We take the average of the system (2.2) 

r-6, II' q + e(q rin tcoa E + Vati 2trin 2g) 
E'= a?, q"-6[k'6in~+.'/r6h2~] 

(2.2) 

These equations enable us to find approximate solutions in the neighbourhood of the lower 
equilibrium position that are close to the exact solutions of (2.2) in a large time interval. 
Taking the average oflland T with respect to such solutions we obtain 

(G) = - &I + W [V+&] 1 CT)=--tU> 

to the accuracy of a*0 (117 I*) +olO (11~ [I*), where y = &,Q) is the vector of the initial values 
of the variables f,q. 

We obtain the maximum of <V>, the minimum of CT) for &,-Q-O, i.e., even in this 
case we have the maximum of CV), and the minimum of CT) at a stable, isolated, synchronous 
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motion, the lower equilibrium position. 
We now consider the upper equilibrium positon of the pendulum, which becomes stable for 

kZ <0,5 /'lo/. Taking the average of the force function and the kinetic energy just as 'de 
did for the lower equilibrium position, we again obtain the maximum of the mean 11 and the 
minimum of the mean T at the stable upper equilibrium position. 

Therefore, an approximate analysis of the values of tli,,iT: in specific mechanics 
problems verifies the V.V. Beletskii hypothesis and also enables us to propose a hypothesis 
about the minimality of the mean value of the kinetic energy and the minimality of the mean 
value of the total energy T-U of mechanical systems in stable isolated synchronous motions. 

The author is grateful to V.V. Beletskii for his interest. 
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ON OSCILLATIONS 

01985 Pergamon Press Ltd. 

OF A GYROSTAT AROUND STABLE PERMANENT ROTATIONS* 

M.P. TSOPA 

The oscillations of a gyrostat with constant gyrostatic moment are invest- 
igatedby the methodof averaging for theEuler, Lagrange andKovalevskaya cases, 
which are analogous to the oscillations studied earlier /l/ of a solid 
around its stable permanent rotations. 

We consider the perturbed motion of a gyrostat in the neighbourhood of permanent rotations 
in a central Newtonian field /2/ whose force function is given by 

u = --mg ("OY, T Y"Y% + %Ys) - 'I+ (Ay? + BY,* + Qo'), or = Q/R. 

Here A, B, C are the principal moments of gyrostat inertia, yi are the direction cosines 
of the z-coordinate axis in the principal axes of inertia, 201 Yo. 20 are coordinates of the 
centre of gyrostat mass in the axes of inertia, m is the gyrostat mass, and g is the accelera- 
tion due to gravity at a distance R from the gravitating centre. 

In the Euler, Lagrange, and Kovalevskaya cases the characteristic equation of the first 
approximation has one or two zero roots and one or two pairs of pure imaginary roots. Consequ- 
ently, the transformation from the variables z; to the amplitudes og,tk and phases + in matrix 
form will be 

. 

z = z ai [Re I', (IO,) c0s ui - Im I', (to,) sin u,] -~ I'_ (I)) $i !l) 

where b,,V, are non-zero columns for the pure imaginary and zero roots of the associated matrix 
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